Weak qubit measurement with a nonlinear cavity: beyond perturbation theory.
نویسندگان
چکیده
We analyze the use of a driven nonlinear cavity to make a weak continuous measurement of a dispersively coupled qubit. We calculate the backaction dephasing rate and measurement rate beyond leading-order perturbation theory using a phase-space approach which accounts for cavity noise squeezing. Surprisingly, we find that increasing the coupling strength beyond the regime describable by leading-order perturbation theory (i.e., linear response) allows one to come significantly closer to the quantum limit on the measurement efficiency. We interpret this behavior in terms of the non-Gaussian photon number fluctuations of the nonlinear cavity. Our results are relevant to recent experiments using superconducting microwave circuits to study quantum measurement.
منابع مشابه
Dissipative Dynamics of a Qubit Coupled to a Nonlinear Oscillator
We consider the dissipative dynamics of a qubit coupled to a nonlinear oscillator (NO) embedded in an Ohmic environment. By treating the nonlinearity up to first order and applying Van Vleck perturbation theory up to second order in the qubit-NO coupling, we derive an analytical expression for the eigenstates and eigenfunctions of the coupled qubit-NO system beyond the rotating wave approximati...
متن کاملBistability in the Electric Current through a Quantum-Dot Capacitively Coupled to a Charge-Qubit
We investigate the electronic transport through a single-level quantum-dot which is capacitively coupled to a charge-qubit. By employing the method of nonequilibrium Green's functions, we calculate the electric current through quantum dot at finite bias voltages. The Green's functions and self-energies of the system are calculated perturbatively and self-consistently to the second order of inte...
متن کاملSolitons in cavity-QED arrays containing interacting qubits
We reveal the existence of polariton soliton solutions in the array of weakly coupled optical cavities, each containing an ensemble of interacting qubits. An effective, complex Ginzburg-Landau equation is derived in the continuum limit, taking into account the effects of cavity field dissipation and qubit dephasing. We have shown that an enhancement of the induced nonlinearity can be achieved b...
متن کاملNonlinear analysis of radially functionally graded hyperelastic cylindrical shells with axially-varying thickness and non-uniform pressure loads based on perturbation theory
In this study, nonlinear analysis for thick cylindrical pressure vessels with arbitrary variable thickness made of hyperelastic functionally graded material properties in nearly incompressible state and clamped boundary conditions under non-uniform pressure loading is presented. Thickness and pressure of the shell are considered in axial direction by arbitrary nonlinear profiles. The FG materia...
متن کاملApplication of Laplace decomposition method for Burgers-Huxley and Burgers-Fisher equations
In this paper, we apply the Laplace decomposition method to obtain a series solutions of the Burgers-Huxley and Burgers-Fisher equations. The technique is based on the application of Laplace transform to nonlinear partial differential equations. The method does not need linearization, weak nonlinearity assumptions or perturbation theory and the nonlinear terms can be easily handled by using the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 109 12 شماره
صفحات -
تاریخ انتشار 2012